The mathematical concept of a Hilbert space, named after

^{2} on the circle, and whose negative frequency Fourier coefficients vanish.

_{2}, the map that sends to is linear and continuous, and according to the Riesz representation theorem can therefore be represented in the form
: $\backslash left\backslash langle\; x,\; A^*\; y\; \backslash right\backslash rangle\; =\; \backslash langle\; Ax,\; y\; \backslash rangle$
for some vector in . This defines another bounded linear operator , the Hermitian adjoint, adjoint of . The adjoint satisfies . When the Riesz representation theorem is used to identify each Hilbert space with its continuous dual space, the adjoint of can be shown to be Riesz representation theorem #Adjoints and transposes, identical to the Transpose of a linear map, transpose of , which by definition sends $\backslash psi\; \backslash in\; H\_2^$ to the functional $\backslash psi\; \backslash circ\; A\; \backslash in\; H\_1^.$
The set of all bounded linear operators on (meaning operators ), together with the addition and composition operations, the norm and the adjoint operation, is a C*-algebra, which is a type of operator algebra.
An element of is called 'self-adjoint' or 'Hermitian' if . If is Hermitian and for every , then is called 'nonnegative', written ; if equality holds only when , then is called 'positive'. The set of self adjoint operators admits a partial order, in which if . If has the form for some , then is nonnegative; if is invertible, then is positive. A converse is also true in the sense that, for a non-negative operator , there exists a unique non-negative Square root of a matrix, square root such that
: $A\; =\; B^2\; =\; B^*B\backslash ,.$
In a sense made precise by the #Spectral theorem, spectral theorem, self-adjoint operators can usefully be thought of as operators that are "real". An element of is called ''normal'' if . Normal operators decompose into the sum of a self-adjoint operators and an imaginary multiple of a self adjoint operator
: $A\; =\; \backslash frac\; +\; i\backslash frac$
that commute with each other. Normal operators can also usefully be thought of in terms of their real and imaginary parts.
An element of is called unitary operator, unitary if is invertible and its inverse is given by . This can also be expressed by requiring that be onto and for all . The unitary operators form a group (mathematics), group under composition, which is the isometry group of .
An element of is compact operator, compact if it sends bounded sets to relatively compact sets. Equivalently, a bounded operator is compact if, for any bounded sequence , the sequence has a convergent subsequence. Many integral operators are compact, and in fact define a special class of operators known as Hilbert–Schmidt operators that are especially important in the study of integral equations. Fredholm operators differ from a compact operator by a multiple of the identity, and are equivalently characterized as operators with a finite dimensional kernel (linear operator), kernel and cokernel. The index of a Fredholm operator is defined by
: $\backslash operatorname\; T\; =\; \backslash dim\backslash ker\; T\; -\; \backslash dim\backslash operatorname\; T\; \backslash ,.$
The index is homotopy invariant, and plays a deep role in differential geometry via the Atiyah–Singer index theorem.

Hilbert space at Mathworld

245B, notes 5: Hilbert spaces

by Terence Tao {{good article Hilbert space, Linear algebra Operator theory Quantum mechanics Functional analysis David Hilbert, Space

David Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in man ...

, generalizes the notion of Euclidean space
Euclidean space is the fundamental space of classical geometry. Originally it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any nonnegative integer dimension (mathematics), dimensio ...

. It extends the methods of vector algebra and calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimal
In mathematics, infinitesimals or infinitesimal numbers are quantities that are closer to zero than any standard real number, but are not zero. They do not ex ...

from the two-dimensional Euclidean plane and three-dimensional space to spaces with any finite or infinite number of dimension
thumb
, 236px
, The first four spatial dimensions, represented in a two-dimensional picture.
In physics
Physics (from grc, φυσική (ἐπιστήμη), physikḗ (epistḗmē), knowledge of nature, from ''phýsis'' 'nature ...

s. A Hilbert space is a vector space equipped with an inner product
In mathematics, an inner product space or a Hausdorff space, Hausdorff pre-Hilbert space is a vector space with a binary operation called an inner product. This operation associates each pair of vectors in the space with a Scalar (mathematics), ...

, an operation that allows lengths and angles to be defined. Furthermore, Hilbert spaces are complete, which means that there are enough limits
Limit or Limits may refer to:
Arts and media
* Limit (music)
In music theory, limit or harmonic limit is a way of characterizing the harmony found in a piece or genre (music), genre of music, or the harmonies that can be made using a particular ...

in the space to allow the techniques of calculus to be used.
Hilbert spaces arise naturally and frequently in mathematics
Mathematics (from Ancient Greek, Greek: ) includes the study of such topics as quantity (number theory), mathematical structure, structure (algebra), space (geometry), and calculus, change (mathematical analysis, analysis). It has no generally ...

and physics
Physics (from grc, φυσική (ἐπιστήμη), physikḗ (epistḗmē), knowledge of nature, from ''phýsis'' 'nature'), , is the natural science that studies matter, its Motion (physics), motion and behavior through Spacetime, spa ...

, typically as infinite-dimensional function spaces. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in man ...

, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, mathematical formulation of quantum mechanics, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the term ''Hilbert space'' for the abstract concept that underlies many of these diverse applications. The success of Hilbert space methods ushered in a very fruitful era for functional analysis. Apart from the classical Euclidean spaces, examples of Hilbert spaces include Lp space, spaces of square-integrable functions, Sequence space, spaces of sequences, Sobolev spaces consisting of generalized functions, and Hardy spaces of holomorphic functions.
Geometric intuition plays an important role in many aspects of Hilbert space theory. Exact analogs of the Pythagorean theorem and parallelogram law hold in a Hilbert space. At a deeper level, perpendicular projection onto a subspace (the analog of "altitude (triangle), dropping the altitude" of a triangle) plays a significant role in optimization problems and other aspects of the theory. An element of a Hilbert space can be uniquely specified by its coordinates with respect to a set of coordinate axes (an orthonormal basis), in analogy with Cartesian coordinates in the plane. When that set of axes is countably infinite, the Hilbert space can also be usefully thought of in terms of the space of infinite sequences that are Lp norm, square-summable. The latter space is often in the older literature referred to as ''the'' Hilbert space. Linear operators on a Hilbert space are likewise fairly concrete objects: in good cases, they are simply transformations that stretch the space by different factors in mutually perpendicular directions in a sense that is made precise by the study of their Spectrum (functional analysis), spectrum.
Definition and illustration

Motivating example: Euclidean vector space

One of the most familiar examples of a Hilbert space is the Euclidean vector space consisting of three-dimensional Euclidean vector, vectors, denoted by , and equipped with the dot product. The dot product takes two vectors and , and produces a real number . If and are represented in Cartesian coordinates, then the dot product is defined by :$\backslash beginx\_1\backslash \backslash x\_2\backslash \backslash x\_3\backslash end\; \backslash cdot\; \backslash beginy\_1\backslash \backslash y\_2\backslash \backslash y\_3\backslash end\; =\; x\_1y\_1+x\_2y\_2+x\_3y\_3\; \backslash ,.$ The dot product satisfies the properties: # It is symmetric in and : . # It is linear function, linear in its first argument: for any scalars , , and vectors , , and . # It is Definite bilinear form, positive definite: for all vectors , , with equality if and only if . An operation on pairs of vectors that, like the dot product, satisfies these three properties is known as a (real)inner product
In mathematics, an inner product space or a Hausdorff space, Hausdorff pre-Hilbert space is a vector space with a binary operation called an inner product. This operation associates each pair of vectors in the space with a Scalar (mathematics), ...

. A vector space equipped with such an inner product is known as a (real) inner product space. Every finite-dimensional inner product space is also a Hilbert space. The basic feature of the dot product that connects it with Euclidean geometry is that it is related to both the length (or norm (mathematics), norm) of a vector, denoted , and to the angle between two vectors and by means of the formula
:$\backslash mathbf\backslash cdot\backslash mathbf\; =\; \backslash ,\; \backslash mathbf\backslash ,\; \backslash ,\backslash ,\; \backslash mathbf\backslash ,\; \backslash ,\backslash cos\backslash theta\; \backslash ,.$
Multivariable calculus in Euclidean space relies on the ability to compute limits
Limit or Limits may refer to:
Arts and media
* Limit (music)
In music theory, limit or harmonic limit is a way of characterizing the harmony found in a piece or genre (music), genre of music, or the harmonies that can be made using a particular ...

, and to have useful criteria for concluding that limits exist. A series (mathematics), mathematical series
: $\backslash sum\_^\backslash infty\; \backslash mathbf\_n$
consisting of vectors in is absolute convergence, absolutely convergent provided that the sum of the lengths converges as an ordinary series of real numbers:
: $\backslash sum\_^\backslash infty\; \backslash ,\; \backslash mathbf\_k\backslash ,\; <\; \backslash infty\; \backslash ,.$
Just as with a series of scalars, a series of vectors that converges absolutely also converges to some limit vector in the Euclidean space, in the sense that
: $\backslash left\backslash ,\; \backslash mathbf-\backslash sum\_^N\backslash mathbf\_k\backslash right\backslash ,\; \backslash to\; \backslash mathbf\backslash quad\backslash textN\backslash to\backslash infty\; \backslash ,.$
This property expresses the ''completeness'' of Euclidean space: that a series that converges absolutely also converges in the ordinary sense.
Hilbert spaces are often taken over the complex numbers. The complex plane denoted by is equipped with a notion of magnitude, the absolute value, complex modulus which is defined as the square root of the product of with its complex conjugate:
: $,\; z,\; ^2\; =\; z\backslash overline\; \backslash ,.$
If is a decomposition of into its real and imaginary parts, then the modulus is the usual Euclidean two-dimensional length:
: $,\; z,\; =\; \backslash sqrt\; \backslash ,.$
The inner product of a pair of complex numbers and is the product of with the complex conjugate of :
: $\backslash langle\; z,\; w\backslash rangle\; =\; z\backslash overline\backslash ,.$
This is complex-valued. The real part of gives the usual two-dimensional Euclidean dot product.
A second example is the space whose elements are pairs of complex numbers . Then the inner product of with another such vector is given by
:$\backslash langle\; z,\; w\backslash rangle\; =\; z\_1\backslash overline\; +\; z\_2\backslash overline\backslash ,.$
The real part of is then the two-dimensional Euclidean dot product. This inner product is ''Hermitian'' symmetric, which means that the result of interchanging and is the complex conjugate:
:$\backslash langle\; w,\; z\backslash rangle\; =\; \backslash overline\backslash ,.$
Definition

A is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the distance function induced by the inner product.The mathematical material in this section can be found in any good textbook on functional analysis, such as , , or . To say that is a means that is a complex vector space on which there is an inner product associating a complex number to each pair of elements of that satisfies the following properties: # The inner product is conjugate symmetric; that is, the inner product of a pair of elements is equal to the complex conjugate of the inner product of the swapped elements: #: $\backslash langle\; y,\; x\backslash rangle\; =\; \backslash overline\backslash ,.$ # The inner product is linear functional, linear in its firstIn some conventions, inner products are linear in their second arguments instead. argument. For all complex numbers and , #: $\backslash langle\; ax\_1\; +\; bx\_2,\; y\backslash rangle\; =\; a\backslash langle\; x\_1,\; y\backslash rangle\; +\; b\backslash langle\; x\_2,\; y\backslash rangle\backslash ,.$ # The inner product of an element with itself is definite bilinear form, positive definite: #: $\backslash begin\; \backslash langle\; x,\; x\backslash rangle\; >\; 0\; \&x\; \backslash neq\; 0\; \backslash \backslash \; \backslash langle\; x,\; x\backslash rangle\; =\; 0\; \&x\; =\; 0\backslash ,.\; \backslash end$ It follows from properties 1 and 2 that a complex inner product is , also called , in its second argument, meaning that :$\backslash langle\; x,\; ay\_1\; +\; by\_2\backslash rangle\; =\; \backslash bar\backslash langle\; x,\; y\_1\backslash rangle\; +\; \backslash bar\backslash langle\; x,\; y\_2\backslash rangle\backslash ,.$ A is defined in the same way, except that is a real vector space and the inner product takes real values. Such an inner product will be a bilinear map and will form a dual system. The norm (mathematics), norm is the real-valued function :$\backslash ,\; x\backslash ,\; =\; \backslash sqrt\backslash ,,$ and the distance between two points in is defined in terms of the norm by :$d(x,\; y)\; =\; \backslash ,\; x\; -\; y\backslash ,\; =\; \backslash sqrt\backslash ,.$ That this function is a distance function means firstly that it is symmetric in and , secondly that the distance between and itself is zero, and otherwise the distance between and must be positive, and lastly that the triangle inequality holds, meaning that the length of one leg of a triangle cannot exceed the sum of the lengths of the other two legs: :$d(x,\; z)\; \backslash le\; d(x,\; y)\; +\; d(y,\; z)\backslash ,.$ : This last property is ultimately a consequence of the more fundamental Cauchy–Schwarz inequality, which asserts :$\backslash bigl,\; \backslash langle\; x,\; y\backslash rangle\backslash bigr,\; \backslash le\; \backslash ,\; x\backslash ,\; \backslash ,\backslash ,\; y\backslash ,$ with equality if and only if and are linear independence, linearly dependent. With a distance function defined in this way, any inner product space is a metric space, and sometimes is known as a . Any pre-Hilbert space that is additionally also a complete space, complete space is a Hilbert space. The of is expressed using a form of the Cauchy criterion for sequences in : a pre-Hilbert space is complete if every Cauchy sequence limit (mathematics), converges with respect to this norm to an element in the space. Completeness can be characterized by the following equivalent condition: if a series of vectors : $\backslash sum\_^\backslash infty\; u\_k$ absolute convergence, converges absolutely in the sense that :$\backslash sum\_^\backslash infty\backslash ,\; u\_k\backslash ,\; <\; \backslash infty\backslash ,,$ then the series converges in , in the sense that the partial sums converge to an element of . As a complete normed space, Hilbert spaces are by definition also Banach spaces. As such they are topological vector spaces, in which topology, topological notions like the open set, openness and closed set, closedness of subsets are well defined. Of special importance is the notion of a closed linear subspace of a Hilbert space that, with the inner product induced by restriction, is also complete (being a closed set in a complete metric space) and therefore a Hilbert space in its own right.Second example: sequence spaces

The sequence space consists of all sequence (mathematics), infinite sequences of complex numbers such that the series (mathematics), series : $\backslash sum\_^\backslash infty\; ,\; z\_n,\; ^2$ convergent series, converges. The inner product on is defined by : $\backslash langle\; \backslash mathbf,\; \backslash mathbf\backslash rangle\; =\; \backslash sum\_^\backslash infty\; z\_n\backslash overline\backslash ,,$ with the latter series converging as a consequence of the Cauchy–Schwarz inequality. Completeness of the space holds provided that whenever a series of elements from converges absolutely (in norm), then it converges to an element of . The proof is basic in mathematical analysis, and permits mathematical series of elements of the space to be manipulated with the same ease as series of complex numbers (or vectors in a finite-dimensional Euclidean space).History

Prior to the development of Hilbert spaces, other generalizations of Euclidean spaces were known to mathematicians and physicists. In particular, the idea of an vector space, abstract linear space (vector space) had gained some traction towards the end of the 19th century: this is a space whose elements can be added together and multiplied by scalars (such as real numbers, real or complex numbers) without necessarily identifying these elements with vector (geometric), "geometric" vectors, such as position and momentum vectors in physical systems. Other objects studied by mathematicians at the turn of the 20th century, in particular spaces of sequence (mathematics), sequences (including series (mathematics), series) and spaces of functions, can naturally be thought of as linear spaces. Functions, for instance, can be added together or multiplied by constant scalars, and these operations obey the algebraic laws satisfied by addition and scalar multiplication of spatial vectors. In the first decade of the 20th century, parallel developments led to the introduction of Hilbert spaces. The first of these was the observation, which arose duringDavid Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in man ...

and Erhard Schmidt's study of integral equations, that two square-integrable real-valued functions and on an interval have an ''inner product''
: $\backslash langle\; f,\; g\; \backslash rangle\; =\; \backslash int\_a^b\; f(x)g(x)\backslash ,\; \backslash mathrmx$
which has many of the familiar properties of the Euclidean dot product. In particular, the idea of an orthogonality, orthogonal family of functions has meaning. Schmidt exploited the similarity of this inner product with the usual dot product to prove an analog of the spectral theorem, spectral decomposition for an operator of the form
: $f(x)\; \backslash mapsto\; \backslash int\_a^b\; K(x,\; y)\; f(y)\backslash ,\; \backslash mathrmy$
where is a continuous function symmetric in and . The resulting eigenfunction expansion expresses the function as a series of the form
: $K(x,\; y)\; =\; \backslash sum\_n\; \backslash lambda\_n\backslash varphi\_n(x)\backslash varphi\_n(y)$
where the functions are orthogonal in the sense that for all . The individual terms in this series are sometimes referred to as elementary product solutions. However, there are eigenfunction expansions that fail to converge in a suitable sense to a square-integrable function: the missing ingredient, which ensures convergence, is completeness.
The second development was the Lebesgue integral, an alternative to the Riemann integral introduced by Henri Lebesgue in 1904. The Lebesgue integral made it possible to integrate a much broader class of functions. In 1907, Frigyes Riesz and Ernst Sigismund Fischer independently proved that the space of square Lebesgue-integrable functions is a complete metric space. As a consequence of the interplay between geometry and completeness, the 19th century results of Joseph Fourier, Friedrich Bessel and Marc-Antoine Parseval on trigonometric series easily carried over to these more general spaces, resulting in a geometrical and analytical apparatus now usually known as the Riesz–Fischer theorem.
Further basic results were proved in the early 20th century. For example, the Riesz representation theorem was independently established by Maurice Fréchet and Frigyes Riesz in 1907. John von Neumann coined the term ''abstract Hilbert space'' in his work on unbounded Self-adjoint operator, Hermitian operators. Although other mathematicians such as Hermann Weyl and Norbert Wiener had already studied particular Hilbert spaces in great detail, often from a physically motivated point of view, von Neumann gave the first complete and axiomatic treatment of them. Von Neumann later used them in his seminal work on the foundations of quantum mechanics, and in his continued work with Eugene Wigner. The name "Hilbert space" was soon adopted by others, for example by Hermann Weyl in his book on quantum mechanics and the theory of groups..
The significance of the concept of a Hilbert space was underlined with the realization that it offers one of the best mathematical formulation of quantum mechanics, mathematical formulations of quantum mechanics. In short, the states of a quantum mechanical system are vectors in a certain Hilbert space, the observables are hermitian operators on that space, the symmetry, symmetries of the system are unitary operators, and quantum measurement, measurements are orthogonal projections. The relation between quantum mechanical symmetries and unitary operators provided an impetus for the development of the unitary representation, unitary representation theory of group (mathematics), groups, initiated in the 1928 work of Hermann Weyl. On the other hand, in the early 1930s it became clear that classical mechanics can be described in terms of Hilbert space (Koopman–von Neumann classical mechanics) and that certain properties of classical dynamical systems can be analyzed using Hilbert space techniques in the framework of ergodic theory.
The algebra of observables in quantum mechanics is naturally an algebra of operators defined on a Hilbert space, according to Werner Heisenberg's matrix mechanics formulation of quantum theory. Von Neumann began investigating operator algebras in the 1930s, as ring (mathematics), rings of operators on a Hilbert space. The kind of algebras studied by von Neumann and his contemporaries are now known as von Neumann algebras. In the 1940s, Israel Gelfand, Mark Naimark and Irving Segal gave a definition of a kind of operator algebras called C*-algebras that on the one hand made no reference to an underlying Hilbert space, and on the other extrapolated many of the useful features of the operator algebras that had previously been studied. The spectral theorem for self-adjoint operators in particular that underlies much of the existing Hilbert space theory was generalized to C*-algebras. These techniques are now basic in abstract harmonic analysis and representation theory.
Examples

Lebesgue spaces

Lebesgue spaces are function spaces associated to measure (mathematics), measure spaces , where is a set, is a Sigma-algebra, σ-algebra of subsets of , and is a countably additive measure on . Let be the space of those complex-valued measurable functions on for which the Lebesgue integration, Lebesgue integral of the square of the absolute value of the function is finite, i.e., for a function in , : $\backslash int\_X\; ,\; f,\; ^2\; \backslash mathrm\; \backslash mu\; <\; \backslash infty\; \backslash ,,$ and where functions are identified if and only if they differ only on a null set, set of measure zero. The inner product of functions and in is then defined as :$\backslash langle\; f,\; g\backslash rangle\; =\; \backslash int\_X\; f(t)\; \backslash overline\; \backslash ,\; \backslash mathrm\; \backslash mu(t)\backslash $ or $\backslash \; \backslash int\_X\; \backslash overline\; g(t)\; \backslash ,\; \backslash mathrm\; \backslash mu(t)\; \backslash ,,$ where the second form (conjugation of the first element) is commonly found in the theoretical physics literature. For and in , the integral exists because of the Cauchy–Schwarz inequality, and defines an inner product on the space. Equipped with this inner product, is in fact complete. The Lebesgue integral is essential to ensure completeness: on domains of real numbers, for instance, not enough functions are Riemann integral, Riemann integrable. The Lebesgue spaces appear in many natural settings. The spaces and of square-integrable functions with respect to the Lebesgue measure on the real line and unit interval, respectively, are natural domains on which to define the Fourier transform and Fourier series. In other situations, the measure may be something other than the ordinary Lebesgue measure on the real line. For instance, if is any positive measurable function, the space of all measurable functions on the interval satisfying : $\backslash int\_0^1\; \backslash bigl,\; f(t)\backslash bigr,\; ^2w(t)\backslash ,\; \backslash mathrmt\; <\; \backslash infty$ is called the Lp space#Weighted Lp spaces, weighted space , and is called the weight function. The inner product is defined by :$\backslash langle\; f,\; g\backslash rangle\; =\; \backslash int\_0^1\; f(t)\; \backslash overline\; w(t)\; \backslash ,\; \backslash mathrmt\; \backslash ,.$ The weighted space is identical with the Hilbert space where the measure of a Lebesgue-measurable set is defined by :$\backslash mu(A)\; =\; \backslash int\_A\; w(t)\backslash ,\backslash mathrmt\; \backslash ,.$ Weighted spaces like this are frequently used to study orthogonal polynomials, because different families of orthogonal polynomials are orthogonal with respect to different weighting functions.Sobolev spaces

Sobolev spaces, denoted by or , are Hilbert spaces. These are a special kind of function space in which derivative, differentiation may be performed, but that (unlike other Banach spaces such as the Hölder spaces) support the structure of an inner product. Because differentiation is permitted, Sobolev spaces are a convenient setting for the theory of partial differential equations. They also form the basis of the theory of Direct method in calculus of variations, direct methods in the calculus of variations. For a non-negative integer and , the Sobolev space contains functions whose weak derivatives of order up to are also . The inner product in is : $\backslash langle\; f,\; g\backslash rangle\; =\; \backslash int\_\backslash Omega\; f(x)\backslash bar(x)\backslash ,\backslash mathrmx\; +\; \backslash int\_\backslash Omega\; D\; f(x)\backslash cdot\; D\backslash bar(x)\backslash ,\backslash mathrmx\; +\; \backslash cdots\; +\; \backslash int\_\backslash Omega\; D^s\; f(x)\backslash cdot\; D^s\; \backslash bar(x)\backslash ,\; \backslash mathrmx$ where the dot indicates the dot product in the Euclidean space of partial derivatives of each order. Sobolev spaces can also be defined when is not an integer. Sobolev spaces are also studied from the point of view of spectral theory, relying more specifically on the Hilbert space structure. If is a suitable domain, then one can define the Sobolev space as the space of Bessel potentials; roughly, : $H^s(\backslash Omega)\; =\; \backslash left.\; \backslash left\backslash \; \backslash ,.$ Here is the Laplacian and is understood in terms of the spectral mapping theorem. Apart from providing a workable definition of Sobolev spaces for non-integer , this definition also has particularly desirable properties under the Fourier transform that make it ideal for the study of pseudodifferential operators. Using these methods on a compact space, compact Riemannian manifold, one can obtain for instance the Hodge decomposition, which is the basis of Hodge theory.Spaces of holomorphic functions

Hardy spaces

The Hardy spaces are function spaces, arising in complex analysis and harmonic analysis, whose elements are certain holomorphic functions in a complex domain. Let denote the unit disc in the complex plane. Then the Hardy space is defined as the space of holomorphic functions on such that the means : $M\_r(f)\; =\; \backslash frac\backslash int\_0^\backslash left,\; f\backslash left(re^\backslash right)\backslash ^2\backslash ,\backslash mathrm\backslash theta$ remain bounded for . The norm on this Hardy space is defined by : $\backslash left\backslash ,\; f\backslash right\backslash ,\; \_2\; =\; \backslash lim\_\; \backslash sqrt\; \backslash ,.$ Hardy spaces in the disc are related to Fourier series. A function is in if and only if : $f(z)\; =\; \backslash sum\_^\backslash infty\; a\_n\; z^n$ where : $\backslash sum\_^\backslash infty\; ,\; a\_n,\; ^2\; <\; \backslash infty\; \backslash ,.$ Thus consists of those functions that are LBergman spaces

The Bergman spaces are another family of Hilbert spaces of holomorphic functions. Let be a bounded open set in the complex plane (or a higher-dimensional complex space) and let be the space of holomorphic functions in that are also in in the sense that :$\backslash ,\; f\backslash ,\; ^2\; =\; \backslash int\_D\; ,\; f(z),\; ^2\backslash ,\backslash mathrm\backslash mu(z)\; <\; \backslash infty\; \backslash ,,$ where the integral is taken with respect to the Lebesgue measure in . Clearly is a subspace of ; in fact, it is a closed set, closed subspace, and so a Hilbert space in its own right. This is a consequence of the estimate, valid on compact space, compact subsets of , that :$\backslash sup\_\; \backslash left,\; f(z)\backslash \; \backslash le\; C\_K\; \backslash left\backslash ,\; f\backslash right\backslash ,\; \_2\; \backslash ,,$ which in turn follows from Cauchy's integral formula. Thus convergence of a sequence of holomorphic functions in implies also compact convergence, and so the limit function is also holomorphic. Another consequence of this inequality is that the linear functional that evaluates a function at a point of is actually continuous on . The Riesz representation theorem implies that the evaluation functional can be represented as an element of . Thus, for every , there is a function such that : $f(z)\; =\; \backslash int\_D\; f(\backslash zeta)\backslash overline\backslash ,\backslash mathrm\backslash mu(\backslash zeta)$ for all . The integrand : $K(\backslash zeta,\; z)\; =\; \backslash overline$ is known as the Bergman kernel of . This integral kernel satisfies a reproducing property : $f(z)\; =\; \backslash int\_D\; f(\backslash zeta)K(\backslash zeta,\; z)\backslash ,\backslash mathrm\backslash mu(\backslash zeta)\; \backslash ,.$ A Bergman space is an example of a reproducing kernel Hilbert space, which is a Hilbert space of functions along with a kernel that verifies a reproducing property analogous to this one. The Hardy space also admits a reproducing kernel, known as the Szegő kernel. Reproducing kernels are common in other areas of mathematics as well. For instance, in harmonic analysis the Poisson kernel is a reproducing kernel for the Hilbert space of square-integrable harmonic functions in the unit ball. That the latter is a Hilbert space at all is a consequence of the mean value theorem for harmonic functions.Applications

Many of the applications of Hilbert spaces exploit the fact that Hilbert spaces support generalizations of simple geometric concepts like projection operator, projection and change of basis from their usual finite dimensional setting. In particular, the spectral theory of continuous function, continuous self-adjoint operator, self-adjoint linear operators on a Hilbert space generalizes the usual Eigendecomposition of a matrix, spectral decomposition of a matrix (mathematics), matrix, and this often plays a major role in applications of the theory to other areas of mathematics and physics.Sturm–Liouville theory

In the theory of ordinary differential equations, spectral methods on a suitable Hilbert space are used to study the behavior of eigenvalues and eigenfunctions of differential equations. For example, the Sturm–Liouville theory, Sturm–Liouville problem arises in the study of the harmonics of waves in a violin string or a drum, and is a central problem in ordinary differential equations. The problem is a differential equation of the form : $-\backslash frac\backslash left[p(x)\backslash frac\backslash right]\; +\; q(x)y\; =\; \backslash lambda\; w(x)y$ for an unknown function on an interval , satisfying general homogeneous Robin boundary conditions : $\backslash begin\; \backslash alpha\; y(a)+\backslash alpha\text{'}\; y\text{'}(a)\; \&=\; 0\; \backslash \backslash \; \backslash beta\; y(b)\; +\; \backslash beta\text{'}\; y\text{'}(b)\; \&=\; 0\; \backslash ,.\; \backslash end$ The functions , , and are given in advance, and the problem is to find the function and constants for which the equation has a solution. The problem only has solutions for certain values of , called eigenvalues of the system, and this is a consequence of the spectral theorem for compact operators applied to the integral operator defined by the Green's function for the system. Furthermore, another consequence of this general result is that the eigenvalues of the system can be arranged in an increasing sequence tending to infinity.The eigenvalues of the Fredholm kernel are , which tend to zero.Partial differential equations

Hilbert spaces form a basic tool in the study of partial differential equations.. For many classes of partial differential equations, such as linear elliptic partial differential equation, elliptic equations, it is possible to consider a generalized solution (known as a weak derivative, weak solution) by enlarging the class of functions. Many weak formulations involve the class of Sobolev space, Sobolev functions, which is a Hilbert space. A suitable weak formulation reduces to a geometrical problem the analytic problem of finding a solution or, often what is more important, showing that a solution exists and is unique for given boundary data. For linear elliptic equations, one geometrical result that ensures unique solvability for a large class of problems is the Lax–Milgram theorem. This strategy forms the rudiment of the Galerkin method (a finite element method) for numerical solution of partial differential equations. A typical example is the Poisson equation with Dirichlet boundary conditions in a bounded domain in . The weak formulation consists of finding a function such that, for all continuously differentiable functions in vanishing on the boundary: : $\backslash int\_\backslash Omega\; \backslash nabla\; u\backslash cdot\backslash nabla\; v\; =\; \backslash int\_\backslash Omega\; gv\backslash ,.$ This can be recast in terms of the Hilbert space consisting of functions such that , along with its weak partial derivatives, are square integrable on , and vanish on the boundary. The question then reduces to finding in this space such that for all in this space : $a(u,\; v)\; =\; b(v)$ where is a continuous bilinear form, and is a continuous linear functional, given respectively by :$a(u,\; v)\; =\; \backslash int\_\backslash Omega\; \backslash nabla\; u\backslash cdot\backslash nabla\; v,\backslash quad\; b(v)=\; \backslash int\_\backslash Omega\; gv\backslash ,.$ Since the Poisson equation is elliptic partial differential equation, elliptic, it follows from Poincaré's inequality that the bilinear form is coercive function, coercive. The Lax–Milgram theorem then ensures the existence and uniqueness of solutions of this equation. Hilbert spaces allow for many elliptic partial differential equations to be formulated in a similar way, and the Lax–Milgram theorem is then a basic tool in their analysis. With suitable modifications, similar techniques can be applied to parabolic partial differential equations and certain hyperbolic partial differential equations.Ergodic theory

The field of ergodic theory is the study of the long-term behavior of chaos theory, chaotic dynamical systems. The protypical case of a field that ergodic theory applies to is thermodynamics, in which—though the microscopic state of a system is extremely complicated (it is impossible to understand the ensemble of individual collisions between particles of matter)—the average behavior over sufficiently long time intervals is tractable. The laws of thermodynamics are assertions about such average behavior. In particular, one formulation of the zeroth law of thermodynamics asserts that over sufficiently long timescales, the only functionally independent measurement that one can make of a thermodynamic system in equilibrium is its total energy, in the form of temperature. An ergodic dynamical system is one for which, apart from the energy—measured by the Hamiltonian (quantum mechanics), Hamiltonian—there are no other functionally independent conserved quantities on the phase space. More explicitly, suppose that the energy is fixed, and let be the subset of the phase space consisting of all states of energy (an energy surface), and let denote the evolution operator on the phase space. The dynamical system is ergodic if there are no continuous non-constant functions on such that : $f(T\_tw)\; =\; f(w)$ for all on and all time . Liouville's theorem (Hamiltonian), Liouville's theorem implies that there exists a measure theory, measure on the energy surface that is invariant under the time translation. As a result, time translation is a unitary transformation of the Hilbert space consisting of square-integrable functions on the energy surface with respect to the inner product : $\backslash left\backslash langle\; f,\; g\backslash right\backslash rangle\_\; =\; \backslash int\_E\; f\backslash bar\backslash ,\backslash mathrm\backslash mu\backslash ,.$ The von Neumann mean ergodic theorem states the following: * If is a (strongly continuous) one-parameter semigroup of unitary operators on a Hilbert space , and is the orthogonal projection onto the space of common fixed points of , , then *: $Px\; =\; \backslash lim\_\backslash frac\backslash int\_0^T\; U\_tx\backslash ,\backslash mathrmt\backslash ,.$ For an ergodic system, the fixed set of the time evolution consists only of the constant functions, so the ergodic theorem implies the following: for any function , : $\backslash underset\; \backslash frac\backslash int\_0^T\; f(T\_tw)\backslash ,\backslash mathrmt\; =\; \backslash int\_\; f(y)\backslash ,\backslash mathrm\backslash mu(y)\backslash ,.$ That is, the long time average of an observable is equal to its expectation value over an energy surface.Fourier analysis

One of the basic goals of Fourier analysis is to decompose a function into a (possibly infinite) linear combination of given basis functions: the associated Fourier series. The classical Fourier series associated to a function defined on the interval is a series of the form : $\backslash sum\_^\backslash infty\; a\_n\; e^$ where : $a\_n\; =\; \backslash int\_0^1f(\backslash theta)e^\backslash ,\backslash mathrm\backslash theta\backslash ,.$ The example of adding up the first few terms in a Fourier series for a sawtooth function is shown in the figure. The basis functions are sine waves with wavelengths (for integer ) shorter than the wavelength of the sawtooth itself (except for , the ''fundamental'' wave). All basis functions have nodes at the nodes of the sawtooth, but all but the fundamental have additional nodes. The oscillation of the summed terms about the sawtooth is called the Gibbs phenomenon. A significant problem in classical Fourier series asks in what sense the Fourier series converges, if at all, to the function . Hilbert space methods provide one possible answer to this question. The functions form an orthogonal basis of the Hilbert space . Consequently, any square-integrable function can be expressed as a series :$f(\backslash theta)\; =\; \backslash sum\_n\; a\_n\; e\_n(\backslash theta)\backslash ,,\backslash quad\; a\_n\; =\; \backslash langle\; f,\; e\_n\backslash rangle$ and, moreover, this series converges in the Hilbert space sense (that is, in the mean convergence, mean). The problem can also be studied from the abstract point of view: every Hilbert space has an orthonormal basis, and every element of the Hilbert space can be written in a unique way as a sum of multiples of these basis elements. The coefficients appearing on these basis elements are sometimes known abstractly as the Fourier coefficients of the element of the space. The abstraction is especially useful when it is more natural to use different basis functions for a space such as . In many circumstances, it is desirable not to decompose a function into trigonometric functions, but rather into orthogonal polynomials or wavelets for instance, and in higher dimensions into spherical harmonics. For instance, if are any orthonormal basis functions of , then a given function in can be approximated as a finite linear combination : $f(x)\; \backslash approx\; f\_n\; (x)\; =\; a\_1\; e\_1\; (x)\; +\; a\_2\; e\_2(x)\; +\; \backslash cdots\; +\; a\_n\; e\_n\; (x)\backslash ,.$ The coefficients are selected to make the magnitude of the difference as small as possible. Geometrically, the #Best approximation, best approximation is the #Orthogonal complements and projections, orthogonal projection of onto the subspace consisting of all linear combinations of the , and can be calculated by : $a\_j\; =\; \backslash int\_0^1\; \backslash overlinef\; (x)\; \backslash ,\; \backslash mathrmx\backslash ,.$ That this formula minimizes the difference is a consequence of #Bessel's inequality and Parseval's formula, Bessel's inequality and Parseval's formula. In various applications to physical problems, a function can be decomposed into physically meaningful eigenfunctions of a differential operator (typically the Laplace operator): this forms the foundation for the spectral study of functions, in reference to the spectral theorem, spectrum of the differential operator. A concrete physical application involves the problem of hearing the shape of a drum: given the fundamental modes of vibration that a drumhead is capable of producing, can one infer the shape of the drum itself? The mathematical formulation of this question involves the Dirichlet eigenvalues of the Laplace equation in the plane, that represent the fundamental modes of vibration in direct analogy with the integers that represent the fundamental modes of vibration of the violin string. Spectral theory also underlies certain aspects of the Fourier transform of a function. Whereas Fourier analysis decomposes a function defined on a compact set into the discrete spectrum of the Laplacian (which corresponds to the vibrations of a violin string or drum), the Fourier transform of a function is the decomposition of a function defined on all of Euclidean space into its components in the continuous spectrum of the Laplacian. The Fourier transformation is also geometrical, in a sense made precise by the Plancherel theorem, that asserts that it is an isometry of one Hilbert space (the "time domain") with another (the "frequency domain"). This isometry property of the Fourier transformation is a recurring theme in abstract harmonic analysis, as evidenced for instance by the Plancherel theorem for spherical functions occurring in noncommutative harmonic analysis.Quantum mechanics

In the mathematically rigorous formulation of quantum mechanics, developed by John von Neumann, the possible states (more precisely, the pure states) of a quantum mechanical system are represented by unit vectors (called ''state vectors'') residing in a complex separable Hilbert space, known as the State space (physics), state space, well defined up to a complex number of norm 1 (the phase factor). In other words, the possible states are points in the projective space, projectivization of a Hilbert space, usually called the complex projective space. The exact nature of this Hilbert space is dependent on the system; for example, the position and momentum states for a single non-relativistic spin zero particle is the space of all square-integrable functions, while the states for the spin of a single proton are unit elements of the two-dimensional complex Hilbert space of spinors in three dimensions, spinors. Each observable is represented by a self-adjoint operator, self-adjoint linear operator acting on the state space. Each eigenstate of an observable corresponds to an eigenvector of the operator, and the associated eigenvalue corresponds to the value of the observable in that eigenstate. The inner product between two state vectors is a complex number known as a probability amplitude. During an ideal measurement of a quantum mechanical system, the probability that a system collapses from a given initial state to a particular eigenstate is given by the square of the absolute value of the probability amplitudes between the initial and final states. The possible results of a measurement are the eigenvalues of the operator—which explains the choice of self-adjoint operators, for all the eigenvalues must be real. The probability distribution of an observable in a given state can be found by computing the spectral decomposition of the corresponding operator. For a general system, states are typically not pure, but instead are represented as statistical mixtures of pure states, or mixed states, given by density matrix, density matrices: self-adjoint operators of trace of a matrix, trace one on a Hilbert space. Moreover, for general quantum mechanical systems, the effects of a single measurement can influence other parts of a system in a manner that is described instead by a positive operator valued measure. Thus the structure both of the states and observables in the general theory is considerably more complicated than the idealization for pure states.Color perception

Any true physical color can be represented by a combination of pure spectral colors. As physical colors can be composed of any number of spectral colors, the space of physical colors may aptly be represented by a Hilbert space over spectral colors. Humans have Trichromacy, three types of cone cells for color perception, so the perceivable colors can be represented by 3-dimensional Euclidean space. The many-to-one linear mapping from the Hilbert space of physical colors to the Euclidean space of human perceivable colors explains why many distinct physical colors may be perceived by humans to be identical (e.g., pure yellow light versus a mix of red and green light, see metamerism (color), metamerism).Properties

Pythagorean identity

Two vectors and in a Hilbert space are orthogonal when . The notation for this is . More generally, when is a subset in , the notation means that is orthogonal to every element from . When and are orthogonal, one has : $\backslash ,\; u\; +\; v\backslash ,\; ^2\; =\; \backslash langle\; u\; +\; v,\; u\; +\; v\; \backslash rangle\; =\; \backslash langle\; u,\; u\; \backslash rangle\; +\; 2\; \backslash ,\; \backslash operatorname\; \backslash langle\; u,\; v\; \backslash rangle\; +\; \backslash langle\; v,\; v\; \backslash rangle=\; \backslash ,\; u\backslash ,\; ^2\; +\; \backslash ,\; v\backslash ,\; ^2\backslash ,.$ By induction on , this is extended to any family of orthogonal vectors, : $\backslash ,\; u\_1\; +\; \backslash cdots\; +\; u\_n\backslash ,\; ^2\; =\; \backslash ,\; u\_1\backslash ,\; ^2\; +\; \backslash cdots\; +\; \backslash ,\; u\_n\backslash ,\; ^2\backslash ,.$ Whereas the Pythagorean identity as stated is valid in any inner product space, completeness is required for the extension of the Pythagorean identity to series. A series of ''orthogonal'' vectors converges in if and only if the series of squares of norms converges, and : $\backslash left\backslash ,\; \backslash sum\_^\backslash infty\; u\_k\; \backslash right\backslash ,\; ^2\; =\; \backslash sum\_^\backslash infty\; \backslash left\backslash ,\; u\_k\backslash right\backslash ,\; ^2\backslash ,.$ Furthermore, the sum of a series of orthogonal vectors is independent of the order in which it is taken.Parallelogram identity and polarization

By definition, every Hilbert space is also a Banach space. Furthermore, in every Hilbert space the following parallelogram identity holds: : $\backslash ,\; u\; +\; v\backslash ,\; ^2\; +\; \backslash ,\; u\; -\; v\backslash ,\; ^2\; =\; 2\backslash left(\backslash ,\; u\backslash ,\; ^2\; +\; \backslash ,\; v\backslash ,\; ^2\backslash right)\backslash ,.$ Conversely, every Banach space in which the parallelogram identity holds is a Hilbert space, and the inner product is uniquely determined by the norm by the polarization identity. For real Hilbert spaces, the polarization identity is : $\backslash langle\; u,\; v\backslash rangle\; =\; \backslash frac\backslash left(\backslash ,\; u\; +\; v\backslash ,\; ^2\; -\; \backslash ,\; u\; -\; v\backslash ,\; ^2\backslash right)\backslash ,.$ For complex Hilbert spaces, it is : $\backslash langle\; u,\; v\backslash rangle\; =\; \backslash tfrac\backslash left(\backslash ,\; u\; +\; v\backslash ,\; ^2\; -\; \backslash ,\; u\; -\; v\backslash ,\; ^2\; +\; i\backslash ,\; u\; +\; iv\backslash ,\; ^2\; -\; i\backslash ,\; u\; -\; iv\backslash ,\; ^2\backslash right)\backslash ,.$ The parallelogram law implies that any Hilbert space is a uniformly convex Banach space.Best approximation

This subsection employs the Hilbert projection theorem. If is a non-empty closed convex subset of a Hilbert space and a point in , there exists a unique point that minimizes the distance between and points in , : $y\; \backslash in\; C\; \backslash ,,\; \backslash quad\; \backslash ,\; x\; -\; y\backslash ,\; =\; \backslash operatorname(x,\; C)\; =\; \backslash min\; \backslash \backslash ,.$ This is equivalent to saying that there is a point with minimal norm in the translated convex set . The proof consists in showing that every minimizing sequence is Cauchy (using the parallelogram identity) hence converges (using completeness) to a point in that has minimal norm. More generally, this holds in any uniformly convex Banach space. When this result is applied to a closed subspace of , it can be shown that the point closest to is characterized by : $y\; \backslash in\; F\; \backslash ,,\; \backslash quad\; x\; -\; y\; \backslash perp\; F\; \backslash ,.$ This point is the ''orthogonal projection'' of onto , and the mapping is linear (see #Orthogonal complements and projections, Orthogonal complements and projections). This result is especially significant in applied mathematics, especially numerical analysis, where it forms the basis of least squares methods. In particular, when is not equal to , one can find a nonzero vector orthogonal to (select and ). A very useful criterion is obtained by applying this observation to the closed subspace generated by a subset of . : A subset of spans a dense vector subspace if (and only if) the vector 0 is the sole vector orthogonal to .Duality

The continuous dual space, dual space is the space of all continuous function (topology), continuous linear functions from the space into the base field. It carries a natural norm, defined by : $\backslash ,\; \backslash varphi\backslash ,\; =\; \backslash sup\_\; ,\; \backslash varphi(x),\; \backslash ,.$ This norm satisfies the parallelogram law, and so the dual space is also an inner product space where this inner product can be defined in terms of this dual norm by using the polarization identity. The dual space is also complete so it is a Hilbert space in its own right. If is a complete orthonormal basis for then the inner product on the dual space of any two $f,\; g\; \backslash in\; H^*$ is :$\backslash langle\; f,\; g\; \backslash rangle\_\; =\; \backslash sum\_\; f\; (e\_i)\; \backslash overline$ where all but countably many of the terms in this series are zero. The Riesz representation theorem affords a convenient description of the dual space. To every element of , there is a unique element of , defined by : $\backslash varphi\_u(x)\; =\; \backslash langle\; x,\; u\backslash rangle\; \backslash ,$ where moreover, $\backslash left\backslash ,\; \backslash varphi\_u\; \backslash right\backslash ,\; =\; \backslash left\backslash ,\; u\; \backslash right\backslash ,\; .$ The Riesz representation theorem states that the map from to defined by is Surjective map, surjective, which makes this map an Isometry, isometric Antilinear map, antilinear isomorphism. So to every element of the dual there exists one and only one in such that : $\backslash langle\; x,\; u\_\backslash varphi\backslash rangle\; =\; \backslash varphi(x)$ for all . The inner product on the dual space satisfies : $\backslash langle\; \backslash varphi,\; \backslash psi\; \backslash rangle\; =\; \backslash langle\; u\_\backslash psi,\; u\_\backslash varphi\; \backslash rangle\; \backslash ,.$ The reversal of order on the right-hand side restores linearity in from the antilinearity of . In the real case, the antilinear isomorphism from to its dual is actually an isomorphism, and so real Hilbert spaces are naturally isomorphic to their own duals. The representing vector is obtained in the following way. When , the Kernel (algebra), kernel is a closed vector subspace of , not equal to , hence there exists a nonzero vector orthogonal to . The vector is a suitable scalar multiple of . The requirement that yields : $u\; =\; \backslash langle\; v,\; v\; \backslash rangle^\; \backslash ,\; \backslash overline\; \backslash ,\; v\; \backslash ,.$ This correspondence is exploited by the bra–ket notation popular inphysics
Physics (from grc, φυσική (ἐπιστήμη), physikḗ (epistḗmē), knowledge of nature, from ''phýsis'' 'nature'), , is the natural science that studies matter, its Motion (physics), motion and behavior through Spacetime, spa ...

. It is common in physics to assume that the inner product, denoted by , is linear on the right,
: $\backslash langle\; x\; ,\; y\; \backslash rangle\; =\; \backslash langle\; y,\; x\; \backslash rangle\; \backslash ,.$
The result can be seen as the action of the linear functional (the ''bra'') on the vector (the ''ket'').
The Riesz representation theorem relies fundamentally not just on the presence of an inner product, but also on the completeness of the space. In fact, the theorem implies that the Banach space, topological dual of any inner product space can be identified with its completion. An immediate consequence of the Riesz representation theorem is also that a Hilbert space is reflexive space, reflexive, meaning that the natural map from into its dual space, double dual space is an isomorphism.
Weakly-convergent sequences

In a Hilbert space , a sequence is weak topology#Weak convergence, weakly convergent to a vector when : $\backslash lim\_n\; \backslash langle\; x\_n,\; v\; \backslash rangle\; =\; \backslash langle\; x,\; v\; \backslash rangle$ for every . For example, any orthonormal sequence converges weakly to 0, as a consequence of #Bessel's inequality, Bessel's inequality. Every weakly convergent sequence is bounded, by the uniform boundedness principle. Conversely, every bounded sequence in a Hilbert space admits weakly convergent subsequences (Alaoglu's theorem). This fact may be used to prove minimization results for continuous convex functionals, in the same way that the Bolzano–Weierstrass theorem is used for continuous functions on . Among several variants, one simple statement is as follows: :If is a convex continuous function such that tends to when tends to , then admits a minimum at some point . This fact (and its various generalizations) are fundamental for direct method in the calculus of variations, direct methods in the calculus of variations. Minimization results for convex functionals are also a direct consequence of the slightly more abstract fact that closed bounded convex subsets in a Hilbert space are Weak topology, weakly compact, since is reflexive. The existence of weakly convergent subsequences is a special case of the Eberlein–Šmulian theorem.Banach space properties

Any general property of Banach spaces continues to hold for Hilbert spaces. The open mapping theorem (functional analysis), open mapping theorem states that a continuous function, continuous surjective linear transformation from one Banach space to another is an open mapping meaning that it sends open sets to open sets. A corollary is the bounded inverse theorem, that a continuous and bijective linear function from one Banach space to another is an isomorphism (that is, a continuous linear map whose inverse is also continuous). This theorem is considerably simpler to prove in the case of Hilbert spaces than in general Banach spaces. The open mapping theorem is equivalent to the closed graph theorem, which asserts that a linear function from one Banach space to another is continuous if and only if its graph is a closed set. In the case of Hilbert spaces, this is basic in the study of unbounded operators (see closed operator). The (geometrical) Hahn–Banach theorem asserts that a closed convex set can be separated from any point outside it by means of a hyperplane of the Hilbert space. This is an immediate consequence of the #Best approximation, best approximation property: if is the element of a closed convex set closest to , then the separating hyperplane is the plane perpendicular to the segment passing through its midpoint.Operators on Hilbert spaces

Bounded operators

The continuous function (topology), continuous linear operators from a Hilbert space to a second Hilbert space are Bounded linear operator, ''bounded'' in the sense that they map bounded sets to bounded sets. Conversely, if an operator is bounded, then it is continuous. The space of such bounded linear operators has a norm (mathematics), norm, the operator norm given by :$\backslash lVert\; A\; \backslash rVert\; =\; \backslash sup\; \backslash left\backslash \backslash ,.$ The sum and the composite of two bounded linear operators is again bounded and linear. For ''y'' in ''H''Unbounded operators

Unbounded operators are also tractable in Hilbert spaces, and have important applications to quantum mechanics. An unbounded operator on a Hilbert space is defined as a linear operator whose domain is a linear subspace of . Often the domain is a dense subspace of , in which case is known as a densely defined operator. The adjoint of a densely defined unbounded operator is defined in essentially the same manner as for bounded operators. Self-adjoint operator, Self-adjoint unbounded operators play the role of the ''observables'' in the mathematical formulation of quantum mechanics. Examples of self-adjoint unbounded operators on the Hilbert space are: These correspond to the momentum and position operator, position observables, respectively. Note that neither nor is defined on all of , since in the case of the derivative need not exist, and in the case of the product function need not be square integrable. In both cases, the set of possible arguments form dense subspaces of .Constructions

Direct sums

Two Hilbert spaces and can be combined into another Hilbert space, called the direct sum of modules#Direct sum of Hilbert spaces, (orthogonal) direct sum, and denoted : $H\_1\; \backslash oplus\; H\_2\; \backslash ,,$ consisting of the set of all ordered pairs where , , and inner product defined by : $\backslash bigl\backslash langle\; (x\_1,\; x\_2),\; (y\_1,\; y\_2)\backslash bigr\backslash rangle\_\; =\; \backslash left\backslash langle\; x\_1,\; y\_1\backslash right\backslash rangle\_\; +\; \backslash left\backslash langle\; x\_2,\; y\_2\backslash right\backslash rangle\_\; \backslash ,.$ More generally, if is a family of Hilbert spaces indexed by , then the direct sum of the , denoted : $\backslash bigoplus\_H\_i$ consists of the set of all indexed families : $x\; =\; (x\_i\; \backslash in\; H\_i,\; i\; \backslash in\; I)\; \backslash in\; \backslash prod\_H\_i$ in the Cartesian product of the such that : $\backslash sum\_\; \backslash ,\; x\_i\backslash ,\; ^2\; <\; \backslash infty\; \backslash ,.$ The inner product is defined by : $\backslash langle\; x,\; y\backslash rangle\; =\; \backslash sum\_\; \backslash left\backslash langle\; x\_i,\; y\_i\backslash right\backslash rangle\_\; \backslash ,.$ Each of the is included as a closed subspace in the direct sum of all of the . Moreover, the are pairwise orthogonal. Conversely, if there is a system of closed subspaces, , , in a Hilbert space , that are pairwise orthogonal and whose union is dense in , then is canonically isomorphic to the direct sum of . In this case, is called the internal direct sum of the . A direct sum (internal or external) is also equipped with a family of orthogonal projections onto the th direct summand . These projections are bounded, self-adjoint, idempotent operators that satisfy the orthogonality condition : $E\_i\; E\_j\; =\; 0,\backslash quad\; i\; \backslash neq\; j\; \backslash ,.$ The spectral theorem for compact operator, compact self-adjoint operators on a Hilbert space states that splits into an orthogonal direct sum of the eigenspaces of an operator, and also gives an explicit decomposition of the operator as a sum of projections onto the eigenspaces. The direct sum of Hilbert spaces also appears in quantum mechanics as the Fock space of a system containing a variable number of particles, where each Hilbert space in the direct sum corresponds to an additional degrees of freedom (mechanics), degree of freedom for the quantum mechanical system. In representation theory, the Peter–Weyl theorem guarantees that any unitary representation of a compact group on a Hilbert space splits as the direct sum of finite-dimensional representations.Tensor products

If and , then one defines an inner product on the (ordinary) tensor product as follows. On simple tensors, let : $\backslash langle\; x\_1\; \backslash otimes\; x\_2,\; \backslash ,\; y\_1\; \backslash otimes\; y\_2\; \backslash rangle\; =\; \backslash langle\; x\_1,\; y\_1\; \backslash rangle\; \backslash ,\; \backslash langle\; x\_2,\; y\_2\; \backslash rangle\; \backslash ,.$ This formula then extends by Sesquilinear form, sesquilinearity to an inner product on . The Hilbertian tensor product of and , sometimes denoted by , is the Hilbert space obtained by completing for the metric associated to this inner product. An example is provided by the Hilbert space . The Hilbertian tensor product of two copies of is isometrically and linearly isomorphic to the space of square-integrable functions on the square . This isomorphism sends a simple tensor to the function : $(s,\; t)\; \backslash mapsto\; f\_1(s)\; \backslash ,\; f\_2(t)$ on the square. This example is typical in the following sense. Associated to every simple tensor product is the rank one operator from to that maps a given as : $x^*\; \backslash mapsto\; x^*(x\_1)\; x\_2\; \backslash ,.$ This mapping defined on simple tensors extends to a linear identification between and the space of finite rank operators from to . This extends to a linear isometry of the Hilbertian tensor product with the Hilbert space of Hilbert–Schmidt operators from to .Orthonormal bases

The notion of an orthonormal basis from linear algebra generalizes over to the case of Hilbert spaces. In a Hilbert space , an orthonormal basis is a family of elements of satisfying the conditions: # ''Orthogonality'': Every two different elements of are orthogonal: for all with . # ''Normalization'': Every element of the family has norm 1: for all . # ''Completeness'': The linear span of the family , , is dense set, dense in ''H''. A system of vectors satisfying the first two conditions basis is called an orthonormal system or an orthonormal set (or an orthonormal sequence if is countable set, countable). Such a system is always linearly independent. Completeness of an orthonormal system of vectors of a Hilbert space can be equivalently restated as: : if for all and some then . This is related to the fact that the only vector orthogonal to a dense linear subspace is the zero vector, for if is any orthonormal set and is orthogonal to , then is orthogonal to the closure of the linear span of , which is the whole space. Examples of orthonormal bases include: * the set forms an orthonormal basis of with the dot product; * the sequence with forms an orthonormal basis of the complex space ; In the infinite-dimensional case, an orthonormal basis will not be a basis in the sense of linear algebra; to distinguish the two, the latter basis is also called a Hamel basis. That the span of the basis vectors is dense implies that every vector in the space can be written as the sum of an infinite series, and the orthogonality implies that this decomposition is unique.Sequence spaces

The space $\backslash ell\_2$ of square-summable sequences of complex numbers is the set of infinite sequences : $(c\_1,\; c\_2,\; c\_3,\; \backslash dots)$ of real or complex numbers such that : $\backslash left,\; c\_1\backslash ^2\; +\; \backslash left,\; c\_2\backslash ^2\; +\; \backslash left,\; c\_3\backslash ^2\; +\; \backslash cdots\; <\; \backslash infty\; \backslash ,.$ This space has an orthonormal basis: : $\backslash begin\; e\_1\; \&=\; (1,\; 0,\; 0,\; \backslash dots)\; \backslash \backslash \; e\_2\; \&=\; (0,\; 1,\; 0,\; \backslash dots)\; \backslash \backslash \; \&\; \backslash \; \backslash \; \backslash vdots\; \backslash end$ This space is the infinite-dimensional generalization of the $\backslash ell\_2^n$ space of finite-dimensional vectors. It is usually the first example used to show that in infinite-dimensional spaces, a set that is Closed set, closed and Bounded set, bounded is not necessarily Sequentially compact space, (sequentially) compact (as is the case in all ''finite'' dimensional spaces). Indeed, the set of orthonormal vectors above shows this: It is an infinite sequence of vectors in the unit ball (i.e., the ball of points with norm less than or equal one). This set is clearly bounded and closed; yet, no subsequence of these vectors converges to anything and consequently the unit ball in $\backslash ell\_2$ is not compact. Intuitively, this is because "there is always another coordinate direction" into which the next elements of the sequence can evade. One can generalize the space $\backslash ell\_2$ in many ways. For example, if is any (infinite) set, then one can form a Hilbert space of sequences with index set , defined by : $\backslash ell^2(B)\; =\backslash left\backslash \; \backslash ,.$ The summation over ''B'' is here defined by : $\backslash sum\_\; \backslash left,\; x\; (b)\backslash ^2\; =\; \backslash sup\; \backslash sum\_^N\; \backslash left,\; x(b\_n)\backslash ^2$ the supremum being taken over all finite subsets of . It follows that, for this sum to be finite, every element of has only countably many nonzero terms. This space becomes a Hilbert space with the inner product :$\backslash langle\; x,\; y\; \backslash rangle\; =\; \backslash sum\_\; x(b)\backslash overline$ for all . Here the sum also has only countably many nonzero terms, and is unconditionally convergent by the Cauchy–Schwarz inequality. An orthonormal basis of is indexed by the set , given by :$e\_b\backslash left(b\text{'}\backslash right)\; =\; \backslash begin\; 1\; \&\; \backslash text\; b=b\text{'}\backslash \backslash \; 0\; \&\; \backslash text\; \backslash end$Bessel's inequality and Parseval's formula

Let be a finite orthonormal system in . For an arbitrary vector , let : $y\; =\; \backslash sum\_^n\; \backslash langle\; x,\; f\_j\; \backslash rangle\; \backslash ,\; f\_j\; \backslash ,.$ Then for every . It follows that is orthogonal to each , hence is orthogonal to . Using the Pythagorean identity twice, it follows that : $\backslash ,\; x\backslash ,\; ^2\; =\; \backslash ,\; x\; -\; y\backslash ,\; ^2\; +\; \backslash ,\; y\backslash ,\; ^2\; \backslash ge\; \backslash ,\; y\backslash ,\; ^2\; =\; \backslash sum\_^n\backslash bigl,\; \backslash langle\; x,\; f\_j\; \backslash rangle\backslash bigr,\; ^2\; \backslash ,.$ Let , be an arbitrary orthonormal system in . Applying the preceding inequality to every finite subset of gives Bessel's inequality: : $\backslash sum\_\backslash bigl,\; \backslash langle\; x,\; f\_i\; \backslash rangle\backslash bigr,\; ^2\; \backslash le\; \backslash ,\; x\backslash ,\; ^2,\; \backslash quad\; x\; \backslash in\; H$ (according to the definition of the series (mathematics)#Summations over arbitrary index sets, sum of an arbitrary family of non-negative real numbers). Geometrically, Bessel's inequality implies that the orthogonal projection of onto the linear subspace spanned by the has norm that does not exceed that of . In two dimensions, this is the assertion that the length of the leg of a right triangle may not exceed the length of the hypotenuse. Bessel's inequality is a stepping stone to the stronger result called Parseval identity, Parseval's identity, which governs the case when Bessel's inequality is actually an equality. By definition, if is an orthonormal basis of , then every element of may be written as : $x\; =\; \backslash sum\_\; \backslash left\backslash langle\; x,\; e\_k\; \backslash right\backslash rangle\; \backslash ,\; e\_k\; \backslash ,.$ Even if is uncountable, Bessel's inequality guarantees that the expression is well-defined and consists only of countably many nonzero terms. This sum is called the Fourier expansion of , and the individual coefficients are the Fourier coefficients of . Parseval's identity then asserts that : $\backslash ,\; x\backslash ,\; ^2\; =\; \backslash sum\_,\; \backslash langle\; x,\; e\_k\backslash rangle,\; ^2\; \backslash ,.$ Conversely, if is an orthonormal set such that Parseval's identity holds for every , then is an orthonormal basis.Hilbert dimension

As a consequence of Zorn's lemma, ''every'' Hilbert space admits an orthonormal basis; furthermore, any two orthonormal bases of the same space have the same cardinal number, cardinality, called the Hilbert dimension of the space. For instance, since has an orthonormal basis indexed by , its Hilbert dimension is the cardinality of (which may be a finite integer, or a countable or uncountable cardinal number). As a consequence of Parseval's identity, if is an orthonormal basis of , then the map defined by is an isometric isomorphism of Hilbert spaces: it is a bijective linear mapping such that :$\backslash bigl\backslash langle\; \backslash Phi\; (x),\; \backslash Phi(y)\; \backslash bigr\backslash rangle\_\; =\; \backslash left\backslash langle\; x,\; y\; \backslash right\backslash rangle\_H$ for all . The cardinal number of is the Hilbert dimension of . Thus every Hilbert space is isometrically isomorphic to a sequence space for some set .Separable spaces

By definition, a Hilbert space is separable space, separable provided it contains a dense countable subset. Along with Zorn's lemma, this means a Hilbert space is separable if and only if it admits a countable orthonormal basis. All infinite-dimensional separable Hilbert spaces are therefore isometrically isomorphic to . In the past, Hilbert spaces were often required to be separable as part of the definition. Most spaces used in physics are separable, and since these are all isomorphic to each other, one often refers to any infinite-dimensional separable Hilbert space as "''the'' Hilbert space" or just "Hilbert space". Even in quantum field theory, most of the Hilbert spaces are in fact separable, as stipulated by the Wightman axioms. However, it is sometimes argued that non-separable Hilbert spaces are also important in quantum field theory, roughly because the systems in the theory possess an infinite number of degrees of freedom (mechanics), degrees of freedom and any infinite Hilbert tensor product (of spaces of dimension greater than one) is non-separable. For instance, a bosonic field can be naturally thought of as an element of a tensor product whose factors represent harmonic oscillators at each point of space. From this perspective, the natural state space of a boson might seem to be a non-separable space. However, it is only a small separable subspace of the full tensor product that can contain physically meaningful fields (on which the observables can be defined). Another non-separable Hilbert space models the state of an infinite collection of particles in an unbounded region of space. An orthonormal basis of the space is indexed by the density of the particles, a continuous parameter, and since the set of possible densities is uncountable, the basis is not countable.Orthogonal complements and projections

If is a subset of a Hilbert space , the set of vectors orthogonal to is defined by : $S^\backslash perp\; =\; \backslash left\backslash \; \backslash ,.$ is a closed set, closed subspace of (can be proved easily using the linearity and continuity of the inner product) and so forms itself a Hilbert space. If is a closed subspace of , then is called the ''orthogonal complement'' of . In fact, every can then be written uniquely as , with and . Therefore, is the internal Hilbert direct sum of and . The linear operator that maps to is called the ''orthogonal projection'' onto . There is a natural transformation, natural one-to-one correspondence between the set of all closed subspaces of and the set of all bounded self-adjoint operators such that . Specifically, : Theorem. The orthogonal projection is a self-adjoint linear operator on of norm ≤ 1 with the property . Moreover, any self-adjoint linear operator such that is of the form , where is the range of . For every in , is the unique element of that minimizes the distance . This provides the geometrical interpretation of : it is the best approximation to ''x'' by elements of ''V''. Projections and are called mutually orthogonal if . This is equivalent to and being orthogonal as subspaces of . The sum of the two projections and is a projection only if and are orthogonal to each other, and in that case . The composite is generally not a projection; in fact, the composite is a projection if and only if the two projections commute, and in that case . By restricting the codomain to the Hilbert space , the orthogonal projection gives rise to a projection mapping ; it is the adjoint of the inclusion mapping : $i\; :\; V\; \backslash to\; H\; \backslash ,,$ meaning that : $\backslash left\backslash langle\; i\; x,\; y\backslash right\backslash rangle\_H\; =\; \backslash left\backslash langle\; x,\; \backslash pi\; y\; \backslash right\backslash rangle\_V$ for all and . The operator norm of the orthogonal projection onto a nonzero closed subspace is equal to 1: : $\backslash ,\; P\_V\backslash ,\; =\; \backslash sup\_\; \backslash frac\; =\; 1\; \backslash ,.$ Every closed subspace ''V'' of a Hilbert space is therefore the image of an operator of norm one such that . The property of possessing appropriate projection operators characterizes Hilbert spaces: * A Banach space of dimension higher than 2 is (isometrically) a Hilbert space if and only if, for every closed subspace , there is an operator of norm one whose image is such that . While this result characterizes the metric structure of a Hilbert space, the structure of a Hilbert space as a topological vector space can itself be characterized in terms of the presence of complementary subspaces: * A Banach space is topologically and linearly isomorphic to a Hilbert space if and only if, to every closed subspace , there is a closed subspace such that is equal to the internal direct sum . The orthogonal complement satisfies some more elementary results. It is a monotone function in the sense that if , then with equality holding if and only if is contained in the closure (topology), closure of . This result is a special case of the Hahn–Banach theorem. The closure of a subspace can be completely characterized in terms of the orthogonal complement: if is a subspace of , then the closure of is equal to . The orthogonal complement is thus a Galois connection on the partial order of subspaces of a Hilbert space. In general, the orthogonal complement of a sum of subspaces is the intersection of the orthogonal complements: : $\backslash left(\backslash sum\_i\; V\_i\backslash right)^\backslash perp\; =\; \backslash bigcap\_i\; V\_i^\backslash perp\; \backslash ,.$ If the are in addition closed, then : $\backslash overline\; =\; \backslash left(\backslash bigcap\_i\; V\_i\backslash right)^\backslash perp\; \backslash ,.$Spectral theory

There is a well-developed spectral theory for self-adjoint operators in a Hilbert space, that is roughly analogous to the study of symmetric matrix, symmetric matrices over the reals or self-adjoint matrices over the complex numbers. In the same sense, one can obtain a "diagonalization" of a self-adjoint operator as a suitable sum (actually an integral) of orthogonal projection operators. The spectrum of an operator , denoted , is the set of complex numbers such that lacks a continuous inverse. If is bounded, then the spectrum is always a compact set in the complex plane, and lies inside the disc . If is self-adjoint, then the spectrum is real. In fact, it is contained in the interval where : $m\; =\; \backslash inf\_\backslash langle\; Tx,\; x\backslash rangle\; \backslash ,,\backslash quad\; M\; =\; \backslash sup\_\backslash langle\; Tx,\; x\backslash rangle\; \backslash ,.$ Moreover, and are both actually contained within the spectrum. The eigenspaces of an operator are given by : $H\_\backslash lambda\; =\; \backslash ker(T\; -\; \backslash lambda)\backslash ,.$ Unlike with finite matrices, not every element of the spectrum of must be an eigenvalue: the linear operator may only lack an inverse because it is not surjective. Elements of the spectrum of an operator in the general sense are known as ''spectral values''. Since spectral values need not be eigenvalues, the spectral decomposition is often more subtle than in finite dimensions. However, the spectral theorem of a self-adjoint operator takes a particularly simple form if, in addition, is assumed to be a compact operator. The Compact operator on Hilbert space#Spectral theorem, spectral theorem for compact self-adjoint operators states: * A compact self-adjoint operator has only countably (or finitely) many spectral values. The spectrum of has no limit point in the complex plane except possibly zero. The eigenspaces of decompose into an orthogonal direct sum: *: $H=\backslash bigoplus\_H\_\backslash lambda\; \backslash ,.$ : Moreover, if denotes the orthogonal projection onto the eigenspace , then :: $T\; =\; \backslash sum\_\; \backslash lambda\; E\_\backslash lambda\; \backslash ,,$ : where the sum converges with respect to the norm on . This theorem plays a fundamental role in the theory of integral equations, as many integral operators are compact, in particular those that arise from Hilbert–Schmidt operators. The general spectral theorem for self-adjoint operators involves a kind of operator-valued Riemann–Stieltjes integral, rather than an infinite summation. The ''spectral family'' associated to associates to each real number λ an operator , which is the projection onto the nullspace of the operator , where the positive part of a self-adjoint operator is defined by : $A^+\; =\; \backslash tfrac\backslash left(\backslash sqrt\; +\; A\backslash right)\; \backslash ,.$ The operators are monotone increasing relative to the partial order defined on self-adjoint operators; the eigenvalues correspond precisely to the jump discontinuities. One has the spectral theorem, which asserts : $T\; =\; \backslash int\_\backslash mathbb\; \backslash lambda\backslash ,\; \backslash mathrmE\_\backslash lambda\; \backslash ,.$ The integral is understood as a Riemann–Stieltjes integral, convergent with respect to the norm on . In particular, one has the ordinary scalar-valued integral representation : $\backslash langle\; Tx,\; y\backslash rangle\; =\; \backslash int\_\; \backslash lambda\backslash ,\backslash mathrm\backslash langle\; E\_\backslash lambda\; x,\; y\backslash rangle\; \backslash ,.$ A somewhat similar spectral decomposition holds for normal operators, although because the spectrum may now contain non-real complex numbers, the operator-valued Stieltjes measure must instead be replaced by a resolution of the identity. A major application of spectral methods is the spectral mapping theorem, which allows one to apply to a self-adjoint operator any continuous complex function defined on the spectrum of by forming the integral : $f(T)\; =\; \backslash int\_\; f(\backslash lambda)\backslash ,\backslash mathrmE\_\backslash lambda\; \backslash ,.$ The resulting continuous functional calculus has applications in particular to pseudodifferential operators. The spectral theory of ''unbounded'' self-adjoint operators is only marginally more difficult than for bounded operators. The spectrum of an unbounded operator is defined in precisely the same way as for bounded operators: is a spectral value if the resolvent operator : $R\_\backslash lambda\; =\; (T\; -\; \backslash lambda)^$ fails to be a well-defined continuous operator. The self-adjointness of still guarantees that the spectrum is real. Thus the essential idea of working with unbounded operators is to look instead at the resolvent where is nonreal. This is a ''bounded'' normal operator, which admits a spectral representation that can then be transferred to a spectral representation of itself. A similar strategy is used, for instance, to study the spectrum of the Laplace operator: rather than address the operator directly, one instead looks as an associated resolvent such as a Riesz potential or Bessel potential. A precise version of the spectral theorem in this case is: : Given a densely defined self-adjoint operator on a Hilbert space , there corresponds a unique resolution of the identity on the Borel sets of , such that :: $\backslash langle\; Tx,\; y\backslash rangle\; =\; \backslash int\_\backslash mathbb\; \backslash lambda\backslash ,\backslash mathrmE\_(\backslash lambda)$ : for all and . The spectral measure is concentrated on the spectrum of . There is also a version of the spectral theorem that applies to unbounded normal operators.In popular culture

Thomas Pynchon introduced the fictional character, Sammy Hilbert-Spaess (a pun on "Hilbert Space"), in his 1973 novel, Gravity's Rainbow. Hilbert-Spaess is first described as a "a ubiquitous double agent" and later as "at least a double agent". The novel had earlier referenced the work of fellow German mathematician Kurt Gödel's Gödel's incompleteness theorems, Incompleteness Theorems, which showed that Hilbert's program, Hilbert's Program, Hilbert's formalized plan to unify mathematics into a single set of axioms, was not possible.See also

* * * * * * * * * * * * * *Remarks

Notes

References

* . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * * . * . * . * . * . * * . * . * . * . * . *. * . * . * . * . * * . *. * * . * . * . * . * . * . * * . * ; originally published ''Monografje Matematyczne'', vol. 7, Warszawa, 1937. * * . * . * . * . * . * . * . * . * . * . * . * . * . * .External links

*Hilbert space at Mathworld

245B, notes 5: Hilbert spaces

by Terence Tao {{good article Hilbert space, Linear algebra Operator theory Quantum mechanics Functional analysis David Hilbert, Space